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Towards an Understanding of the
Molecular Complexity of Cancer
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Introduction
The molecular biology of cancer cells has a crucial role not only in pro-

moting scientific knowledge, but also in developing better treatments for pa-
tients of a disease that is still in strong medical need. Since the eighties of the
last century, the research in this field has been characterized by a genetic ap-
proach. The recombinant DNA technologies, developed in those years, al-
lowed to isolate genes (called “oncogenes”), which were shown to be able to
promote both in vitro and in vivo cancer growth. More than one hundred
oncogenes have been described, together with a few “oncosuppressors”, genes
whose function is, on the contrary, to block cancer cells proliferation.
Extensive analysis of the molecular functions of both oncogenes and on-

cosuppressors has shown, to the surprise of the scientific community, that they
encode for mutated or overexpressed proteins, which, in the wild type form
and at normal level, are constituents of healthy cells. The large part of these
proteins are involved in signaling, that is in the cascade of biochemical reactions
that convey the cues coming from the environment (from nutrient availability
and/or from the presence of growth factors) to the cell machinery.
Given that oncogenes are found to activate signaling, thereby allowing

cancer cells to grow under conditions in which normal cells do not, a new
drug discovery strategy was developed: to construct molecules able to block,
in a specific way, the various oncogenes, whose activation underlays each
given cancer type. Although these new drugs present, at first, very positive
clinical responses, quite often, after several months of treatment, there is a
recurrence of the disease, due to innate or acquired resistance (1, 2). New
signaling pathways, able to sustain the growth and survival of cancer cells,
are activated, mostly by mutations, generated by the genomic instability of
cancer cells (3), so to bypass the oncogenic signaling pathway which was
the initial target of the therapeutic treatment. It has become clear, therefore,
that the genetic approach, which polarized the interest on specific onco-
genes (and on the signaling pathways in which they are involved), while it
considered the growth and survival of cancer cells as a “read out” of the
genetic analysis, is no longer tenable, and instead investigations have to be
directed to the molecular basis of the specific “read out” of cancer cells. 
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The molecular setup of a human cell is extremely complex: while we
have about 50,000 billion cells in a human body, each cell contains, on av-
erage, about 1 billion proteins of about 10,000 different sequences, being
the proteins the components that carry out the large majority of the activ-
ities of the cell. Furthermore, each of these proteins may be localized in
different compartments of the cell (having a distinct role in each compart-
ment) and may be modulated in its activity by a number of different post-
translational modifications (i.e. phosphorylation, acetylation, etc.) that are
under the control of the signaling apparatus.

Molecular complexity of cancer cells 
The “omics” technologies (transcriptome, proteome and metabolome

analyses), together with the classical approaches of cellular and molecular
biology, have collected a wealth of information on molecular changes ob-
served in cancer cells, when compared with normal ones. The various types
of tumors and the many cancer cell lines that have been analyzed, show
changes, for instance, in several thousand gene products, which are largely
different between one type and another type of tumor or cell line (4). The
necessity thus emerged to develop automatic, computational algorithms
able to extract information from those sets of Big Data (5). Statistical analysis
and graph theory have offered the first tools used to extract an order from
this deluge of data (6), but they have obtained a very limited success in
terms of a better understanding of the disease.
Following a line of thought first elaborated by René Descartes on how to

treat complex problems to be solved: “to divide each difficulty which I ex-
amined into as many parts as possible and as might be necessary to resolve it
better”, Hanahan and Weiberg (7) recognized that, under the vast catalogue
of different cancer phenotypes, there are a small number of essential alterations
in cell biochemistry and physiology (that they called “hallmarks”), which, in-
tegrated in various ways, generate the features of cancer disease.
Some of these hallmarks are specifically expressed in the organism, for

instance the ability to metastasize, others are properties that can be investi-
gated, under controlled conditions, also in cancer cells growing “in vitro”.
A reorganization of cancer hallmarks, following a systems approach, iden-
tified a number of functional modules, each one characterized by a meas-
urable input, a molecular network that elaborates the input, to produce a
measurable output (8).
Systems Biology is emerging as the necessary approach to investigate

how the interactions of a large number of molecular players generate the
functional properties of living cells (9). The integration of molecular analysis
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with mathematical modeling and simulation, in an iterative process, char-
acterizes the systems biology approach, since it allows to investigate the role
of non-linear dynamic steps in the network under investigation (10). Math-
ematical models may be constructed at different levels of resolution (11)
and based on different rationales (12, 13).
Due to the non-linearity of biological complex processes, their functions

emerge as a system-level property, making the relation between genotype
and phenotype not straightforward (as it may happen for simple functions,
like the transport of respiratory gases by hemoglobin), but very difficult to
predict, if one knows only the properties of the individual components and
not the map and the strength of their interactions, organized in a dynamic
mathematical model. This is the reason why a purely reductionist approach
is not, and will not, be able to explain complex functions, as cancer, and
systems biology is needed to move towards the understanding of complex
functions as emergent properties.
Going back to the cancer hallmarks, the more basic property, necessary

for the development of the disease, is the uncontrolled, enhanced cell
growth, that is well characterized under “in vitro” conditions. Extensive
transcriptome analysis has shown that almost 3000 gene products are dif-
ferentially expressed in cancer cells as compared to their normal counter-
parts (14). Clustering analysis has identified, among various changes,
alterations in metabolism, both glycolytic and mitochondrial (15).

Cancer metabolism rewiring
In 1956 Otto Warburg reported that most cancer cells present a high

rate of glycolysis, even in the presence of oxygen. Pyruvate, instead of being
oxidized by mitochondria, as normal cells do, is converted to lactate. He
postulated that this change of metabolism be the fundamental cause of ma-
lignant transformation (16).
The Warburg hypothesis was scoffed at, and later forgotten in the period

in which the genetic approach to oncogenes was popular. Things started to
change when evidence accumulated to show that different oncogenes have
as a common “read out”: the stimulation of glycolysis (17).
The turnaround occurred a few years ago, when it was shown that, be-

sides having stimulated glycolysis, several cancer cells are “glutamine ad-
dicted”, that is, they require glutamine (a non essential aminoacid in
humans) for proliferation (18, 19). Glutamine is utilized by reductive car-
boxylation, an unusual pathway which may lead to lipid synthesis (20).
In K-Ras transformed cells, utilization of glucose and glutamine has

been shown to be decoupled: glucose goes to lactate, producing ATP on
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the way, while glutamine is utilized both as a carbon and nitrogen source
for biomass production (21). One has to recall that normal cells utilize glu-
tamine only as a source of organic nitrogen and excrete the remaining glu-
tamic acid (the carbon moiety). It should be added that in the same
transformed cells, mitochondria are quite inefficient, having the Complex
I dysfunctional (22).
Is it possible to connect all the information that we have by now on the

ample cancer metabolic rewiring (CMR): stimulated glycolysis and reduc-
tive carboxylation of glutamine, mitochondrial dysfunction, enhanced lipid
synthesis, sustained protein and nucleic acid production, etc.? This is going
to be a great task for systems biology.
First of all, we need to reconstruct the large metabolic network that un-

derlays CMR. A redox control has been identified from the analysis of the
map, linking the various areas of the metabolism and explaining their inter-
locking (23). Advanced computational approaches are required to unravel the
complexity of metabolism and of its regulation (24). Of particular interest are
constraint-based models (12, 13). This ingenious approach, that requires to
know the stoichiometry of the reactions involved without asking for their
kinetics parameters, which are very difficult to obtain by experimental analy-
sis, allows to estimate the flux, that, in steady state, traverse the various path-
ways of the metabolism, thereby offering an informative description of the
functionality of the entire network. Flux Balance Analysis has been developed
both for small networks and for genome-scale networks (25, 26). Given that
experimental findings indicate that various types of tumors may have different
metabolic pathways (some are reported to be glycolytic while others are ox-
idative), an ensemble evolutionary constraint-based approach was developed
to better understand how various phenotypes of CMR metabolism may be
generated (27).
Studies, now underway in my laboratory, based on the various compu-

tational approaches indicated above, are recognizing the design principles
that underlay CMR in various cancer cells.

Conclusions and perspectives
Analytical technologies, based on mass spectrometry, allow to obtain ex-

perimental findings not only on metabolic profiling and on metabolic path-
way analysis, but more importantly also on metabolic flux analysis (25, 26),
which can be used to ascertain the validity of the indications coming from
computational Flux Balance Analysis, for various tumors and cell lines. The
details of CMR in various types of cancer are thus going to be ascertained.
Given that inhibition of CMR has been shown to block cancer cell growth,
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the knowledge of the biochemical pathways involved in CMR is going to be
the stepping-stone for a new strategy of anticancer drug discovery.
The molecular complexity of cancer is a very clear example of the “or-

ganized complexity” anticipated by Warren Weaver (28). While classical
physics has been devoted to few-variable problems and many areas of sci-
entific investigation are analyzing “disorganized complexity”, in which nu-
merous variables can only be treated by probability analysis, biology offers
problems of “organized complexity”.
A moderate number of variables, often linked by non-linear relation-

ships, generate functions as emergent properties. As discussed above, only
the integration of extensive molecular analysis and of computational algo-
rithms and models may allow to understand how biological functions are
generated by organized molecular complexity.
As shown in this note, science has become able to tackle with success

this new frontier, having developed appropriate experimental and compu-
tational approaches. It is a real paradigm change: from the consolidated mo-
lecular and reductionist approach, biology is moving towards a new
integrated, multidisciplinary approach, that is going to be “Big Science”
oriented. As predicted by Weaver, large communities of scientists are going
to collaborate to reach macro-objectives: from a better understanding of
major diseases to unraveling the relations brain/mind.
The flourishing of biological organized complexity studies is expected

to elucidate new concepts that are going to impact also on the analysis and
management of man-made organized complexity, such as that found in so-
cial or financial organizations.
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