John Charles Polanyi

polanyi2010

Data di nascita 23 gennaio 1929
Luogo Berlino (Germania)
Nomina 9 giugno 1986
Disciplina Chimica
Titolo Professore, Premio Nobel in Chimica, 1986

Principali premi, riconoscimenti e accademie
Premi: Medaglia Marlow, Faraday Society, Regno Unito (1962); Premio Steacie per le Scienze Naturali (1965); Medaglia Henry Marshall Tory della Royal Society del Canada (1977); Premio Wolf per la Chimica, condiviso con G. Pimentel (1982); Premio Nobel in Chimica (1986). Accademie: Royal Society, Canada; Royal Society, Londra; American Academy of Arts and Sciences; National Academy of Sciences, USA; Compagno dell’Ordine del Canada; Pontificia Accademia delle Scienze; Accademia delle Scienze russa.


Riassunto dell’attività scientifica
Gli ultimi decenni hanno visto la nascita di un campo della fisica chimica denominato “dinamica delle reazioni”, ovvero lo studio dei movimenti atomici e molecolari alla base di una reazione chimica. A partire dal 1956 il laboratorio di J.C. Polanyi presso l’Università di Toronto cercò di rilevare e misurare l’entità della vibrazione e della rotazione nei prodotti di reazione derivanti da reazioni gassose, registrando le loro emissioni nell’infrarosso. Questi esperimenti hanno poi prodotto dati quantitativi riguardanti i movimenti nelle molecole nell’istante della loro formazione, oltre all’effetto su questi movimenti di prodotto di alterazioni sistematiche nei movimenti corrispondenti nei reagenti. Da questi dati è stato possibile, tramite calcoli di traiettoria Monte Carlo condotti in questo e altri laboratori, discernere i modelli di movimento durante la transizione da reagenti a prodotto. Più di recente il laboratorio di Polanyi è stato coinvolto in un tentativo di stabilire, tramite teorie ed esperimenti, un metodo per sondare direttamente lo “stato di transizione” subpicosecondo, sia registrando l’emissione debole o tramite assorbimento laser. Questo campo di ricerca (ancora allo stadio iniziale) costituisce la “spettroscopia dello stato di transizione”. Ultimamente il laboratorio si è occupato della dinamica delle reazioni semplici aventi luogo in superficie. Seguendo l’assorbimento di sub-monostrati sulla superficie, la reazione viene avviata dalla luce ultravioletta. L’indicazione attuale è che questa procedura può risultare in una reazione tra specie coassorbite, entrambe in superficie con luoghi e orientamenti preferiti. Più di recente il laboratorio di Polanyi si è occupato dello studio della fotoreazione una molecola alla volta, sotto la punta di un microscopio a effetto tunnel. La speranza è quella di sfruttare questa “fotochimica allineata con la superficie” come mezzo di migliorare la nostra comprensione e quindi il nostro controllo, dei percorsi delle reazioni microscopiche – la coreografia molecolare del processo di reazione.

Pubblicazioni principali
Cashion, J.K. and Polanyi, J.C., Infrared Chemiluminescence from the Gaseous Reaction Atomic H Plus Cla, J. Chem. Phys., 29, p. 455 (1958); Polanyi, J.C., Energy Distribution Among Reagents and Products of Atomic Reactions, J. Chem. Phys., 31, p. 1338 (1959); Polanyi, J.C., Proposal for an Infrared Maser Dependent on Vibrational Excitation, J. Chem. Phys., 34, p. 347 (1961); Polanyi, J.C., The Iraser and Vaser. A Proposal for an Infrared and Visible Analogue of the Maser, Proc. Roy. Soc. (Canada), 54(C), p. 25 (1960); Polanyi, J.C., Vibrational-Rotational Population Inversion, J. Appl. Optics. Chemical Laser Supplement, pp. 109-127 (1965); Kuntz, P.J., Nemeth, E.M., Polanyi, J.C., et al., Energy Distribution Among Products of Exothermic Reactions. II. Repulsive, Mixed and Attractive Energy Release, J. Chem. Phys., 44, p. 1168 (1966); Polanyi, J.C. and Wong, W.H., Location of Energy Barriers. I. Effect on the Dynamics of Reaction A+BC, J. Chem. Phys., 51, p. 1439 (1969); Mok, M.H. and Polanyi, J.C., Location of Energy Barriers. II. Correlation with Barrier Height, J. Chem. Phys., 51, p. 1451 (1969); Ding, A.M.G., Kirsch, L.J., Perry, D.S., Polanyi, J.C. and Schreiber, J.L., The Effect of Changing Reagent Energy on Reaction Probability, and Product Energy-Distribution, Faraday Disc. Chem. Soc., 55, p. 252 (1973); Polanyi, J.C. and Schreiber, J.L., The Reaction F+H2->HF+H: A Case Study in Reaction Dynamics, Faraday Disc. Chem. Soc., 62, p. 267 (1977); Foth, H.-J., Polanyi, J.C. and Telle, H.H., Emission from Molecules and Reaction Intermediates in the Process of Falling Apart, J. Phys. Chem., 86, p. 5027 (1982); Arrowsmith, P., Bly, S.H.P., Charters, P.E. and Polanyi, J.C., Spectroscopy of the Transition State. II. F+Na2->FNaNa+' ->NaF+Na', J. Chem. Phys., 79, p. 283 (1983); Bourdon, E.B.D., Cowin, J.P., Harrison, I., Polanyi, J.C., et al., UV Photodissociation and Photodesorption of Adsorbed Molecules. I: CH2Br on LiF(001), J. Phys. Chem., 88, p. 6100 (1984); Bourdon, E.B.D., Das, P., Harrison, I., Polanyi, J.C., et al., Photodissociation, Photoreaction and Photodesorption of Adsorbed Species. II. CH2Br and H2S on LiF(001), Faraday Diac. Chem. Soc., 82 (1986); Lu, P.H., Polanyi, J.C. and Rogers, D., Photoinduced Localized Atomic Reaction (LAR) of 1,2- and 1,4-dichlorobenzene with Si(111)7x7, J. Chem. Phys., 112, p. 11005 (2000); Jiang, G., Polanyi, J.C., Rogers, D., Electron and Photon Irradiation of Benzene and Chlorobenzene on Si(111)7x7, Surface Science, 544, p. 147 (2003); I.D. Petsalakis, J.C. Polanyi and G. Theodorakopoulos, Theoretical Study of the Induced Attachment of Benzene to Si(111)-7x7, Surface Science 544, 162 (2003); S. Dobrin, H. He, F.Y. Naumkin, J.C. Polanyi, and S.A. Raspopov, Photoinduced Charge-Transfer Reaction at Surfaces. Part II: HBr...Nan/LiF(001) + hf(610 nm)->Br-Na+n/LiF(001) + H(g), J. Chem. Phys. 119, 9795 (2003); F.Y. Naumkin, J.C. Polanyi, et al., Electron-Induced Attachment of Chlorinated Benzenes to Si(100)-2x1, Surface Science 547, 324 (2003); C.F. Matta and J.C. Polanyi, Chemistry on a Peg-Board: The Effect of Adatom-to-Adatom Separation on the Reactivity of Dihalobenzenes at Si(111)-7x7 Surfaces, Phil. Trans. Royal Soc. London A, 362, 1185 (2004); S. Dobrin, K. Rajamma Harikumar and J.C. Polanyi, An STM Study of the Localized Atomic Reaction of 1,2 and 1,4-diBrPh at Si(111)-7x7, Surface Science 561, 11 (2004); K. Rajamma Harikumar, I.D. Petsalakis, J.C. Polanyi and G. Theodorakopoulos, Parent- and Daughter-Mediated Halogenation Reactions Modeled For 1,2- and 1,4-Dibromobenzene at Si(111)-7x7, Surface Science 572, 162 (2004); S. Dobrin, X. Lu, F.Y. Naumkin, J.C. Polanyi and J. (S.Y.) Yang, Imprinting Br-Atoms at Si(111) from a SAM of CH3Br(ad), with Pattern Retention, Surf. Sci. Letters 573, L363 (2004); S. Dobrin, J.B. Giorgi, F.Y. Naumkin and J.C. Polanyi, Photoinduced Charge Transfer Reaction at Surfaces. III. (HF)2...Nan/LiF(001) + hf(640 nm) -> HFF-Nan+/LiF(001) + H(g), J. Chem. Phys. 122, 14705 (2005); S. Dobrin, K. Rajamma Harikumar, C.F. Matta and J.C. Polanyi, An STM Study of the Localized Atomic Reaction of 1,2 and 1,4-Dibromoxylene at Si(111)-7x7, Surf. Sci., 580, 39 (2005); H.E. Ruda, J.C. Polanyi, et al., Developing 1D Nanostructure Arrays for Future Nanophotonics, Nanoscale Research Letters, 1, 99 (2006); S. Dobrin, K. Rajamma Harikumar and J.C. Polanyi, STM Study of the Conformation and Reaction of Long-Chain Halo Alkanes at Si(111)-7x7, J. Phys. Chem. B. 110, 8010 (2006); X. Lu, J.C. Polanyi and J. (S.Y.) Yang, A Reversible Molecular Switch Based on Pattern-Change in Chlorobenzene and Toluene on a Si(111)-(7x7) Surface, Nano Lett. 6, 809 (2006); S. Dobrin, K.R. Harikumar, R.V. Jones, I.R. McNab, J.C. Polanyi, et al., Molecular Dynamics of Haloalkane Corral-Formation and Surface Halogenation at Si(111)-7x7, J. Chem. Phys. 125, 133407 (2006); K.R. Harikumar, J.C. Polanyi, et al., Electronic Switching of Single Silicon Atoms by Molecular Field Effects, J. Am. Chem. Soc., 128, 16791 (2006); S. Dobrin, K.R. Harikumar, T.B. Lim, L. Leung, I.R. McNab, J.C. Polanyi, et al., Maskless nanopatterning and formation of nano-corrals and switches, for haloalkanes at Si(111)-7x7, Nanotechnology, 18, 044012 (2007).

Indirizzo professionale

University of Toronto
Department of Chemistry
Lash Miller Chemical Laboratories
80 St. George Street
Toronto, Ontario, M5S 1A1 (Canada)